Current Design & Construction Practices For Micropile Supported Foundations of Electrical Transmission Structures in North America

Nickolas G. Salisbury
Steven A. Davidow, P.E., S.E.
Crux Subsurface, Inc.
Electrical Transmission Market

- More than 35% increase in demand over last 20 years in North America
- Increased demand for renewable energy sources (Hydro, Wind, Solar)
 - Alignments traverse remote, environmentally sensitive and rugged terrain
 - Innovative access and construction methods required
Typical Electrical Structure Types

- Tubular Steel Pole
- Self-Supporting Lattice
- Guyed Lattice
Foundation Types

• Conventional Transmission Structure Sites
 ▫ Predicated upon conventional access

• Traditional Foundation Types:
 ▫ Drilled Shaft
 ▫ Mat Foundation
 ▫ Grillage

• Cost Effective
Foundation Types

- Difficult to Access, Environmentally Sensitive Sites, or Challenging Geotechnical Conditions Require Alternative Foundation Options
 - Mountainous Terrain
 - Wetlands
 - Unpredictable geotechnical conditions
 - Sites where road building is not feasible or permitted

Protected Wetlands
Micropile Foundations

• Micropiles Provide an Ideal Foundation Solution
 ▫ Lightweight ground transportation and helicopter portable equipment and materials
 ▫ Small area of construction impact
 ▫ Adaptable to a wide variety of geotechnical conditions
 ▫ Develop high capacity in tension, compression, and lateral (composite micropiles)
Project Examples

- **Sunrise Powerlink Project**
 - 188 km, 500 kV alignment
 - California, United States
 - Self supporting structure loads (per leg):
 - 1000 K Compression
 - 900 K Tension
 - 400 K Shear
 - Geotechnical Conditions:
 - Sedimentary deposits overlying bedrock
 - Primarily granitic bedrock with localized volcanic rock
 - Corrosive soils in the coastal area
Project Examples

- **Northwest Transmission Line**
 - 343 km, 287 kV alignment
 - British Columbia, Canada
 - Guyed and self supporting structures
 - Loads (per leg):
 - 400 K compression
 - 350 K tension
 - 140 K shear
 - Geotechnical Conditions:
 - Highly variable depth to rock
 - Fluvial sands/cobbles/boulders overlying glacial till or bedrock
 - Bedrock consisted of medium to fine grained sandstone, siltstone, and shale
Solution

• Utilize Helicopter Portable Equipment and Materials
 ▫ Drills
 ▫ Platforms
 ▫ High pressure air
 ▫ Testing equipment
 ▫ Grout transfer units
 ▫ Threaded bar and casing
 ▫ Steel pile caps

• Also Beneficial for Light Ground Based Access
Solution

- Composite Micropiles Installed in Circular Array
 - Omni-directional capacity
 - Casing provides flexural resistance and fixity with cap
 - Reinforcing bar and grout provide axial capacity
Solution

- Pile Installation and Field Characterization
 - Drilling first pile allows for site characterization (US Patent Pending)
 - Utilize foundation schedule to calibrate installation to design
 - Vary quantity of piles, cased length, and bond length based on site characterization
Steel Pile Caps

- Steel Pile Caps Introduced to Both Projects as an Alternate
Steel Pile Caps

- **Benefits**
 - Prefabricated under high level quality control
 - Galvanized
 - All bolted connections
 - Faster construction time
 - Better schedule control
 - Increased project safety

- **Challenges**
 - Complicated geometry and analysis
 - Fixity with piles – no welding
 - Adaptability with site variable pile quantities
 - Difficult to galvanize – thermal stresses
Steel Pile Caps

- Steel Cap Drawings

- Welded series of plates
- Omni-directional variation Between 12, 6, 4, and 3 pile configurations
- Fixity between pile and cap
- Worked with fabricator to develop galvanization process and weld inspection protocol
Steel Pile Caps

- Finite Element Analysis

- Shell elements
- Review of peak stresses and deflections
- Review of potential buckling of plates
- Estimate of foundation rotation
- More accurate weld design
- Allowed for design refinement and reduced cap weight
Steel Pile Caps

- Finite Element Analysis

- Conflict resolution
- Shop/fabrication drawings
Steel Pile Caps

• Full Scale Load Test
 ▫ Calibrate FE model through full scale testing
 ▫ Applied 1000 K compression and 350 K shear simultaneously
 ▫ Resulting deflections closely match FE predictions
Concrete Pile Caps

• Concrete Caps are utilized when larger rotational capacity is required

• Benefits
 ▫ More efficiently support larger overturning loads
 ▫ Fixity between cap and pile easier to attain
 ▫ Corrosion protection by concrete cover

• Challenges
 ▫ Longer construction time
 ▫ Affected by weather
 ▫ Lower QC reliability
Concrete Pile Caps

- **Strut and Tie Analysis**
 - Caps are controlled by shear failure
 - Compact sections with little flexure
 - Model concrete section as a system of compression struts and tension ties
 - More desirable distribution of reinforcing
Concrete Pile Caps

- Conflict Resolution
 - 3D Modeling of Reinforcing and Micropiles
 - Determine tolerance between components
 - Develop shop drawings for reinforcing fabrication
Concluding Observations

• Traditional foundation methods will continue to be advantageous in conventional access environments
• Transmission projects will continue to be forced into areas with non-conventional access or challenging geotechnical conditions
• Miropiles are a proven and reliable foundation solution for a variety of non-conventional construction applications
• Continued innovation in micropile design and cap construction will broaden the applications for micropile construction
Questions and Answers