TABLE OF CONTENTS

1. **INTRODUCTION**
 - 1.1 History of Non-Destructive Testing Methods for Deep Foundations: 6
 - 1.2 Definition of Non-Destructive Testing: 10
 - 1.3 Purpose and Goals: 11
 - 1.4 End Users: 12
 - 1.5 Scope: 13
 - 1.6 Terminology: 13
 - 1.7 References: 14

2. **APPLICATION OF NON-DESTRUCTIVE TESTING TO DRILLED SHAFTS**
 - 2.1 Overview: 16
 - 2.2 Project Requirements: 16
 - 2.3 Selecting a Non-Destructive Test Method: 18
 - 2.4 Preparing Specifications: 21
 - 2.5 Contract Aspects: 22
 - 2.6 References: 23

3. **INSPECTION AND OBSERVATION METHODS**
 - 3.1 Drilled Shaft Construction Inspection: 24
 - 3.2 Video Camera Inspection: 25
 - 3.3 Shaft Wall Inspection: 27
 - 3.4 Shaft Calipers: 28
 - 3.5 References: 29

4. **INTEGRITY TESTING METHODS**
 - 4.1 Introduction: 30
 - 4.2 Cross-Hole Sonic Logging (CSL): 30
 - 4.3 Single-Hole Sonic Logging (SSL): 36
 - 4.4 Impulse Echo (Sonic Echo) Method: 37
 - 4.5 Impulse Response Spectrum (Sonic Mobility) Method: 41
 - 4.6 Parallel Seismic Method: 44
 - 4.7 Tube Radioactive Integrity Testing (Gamma-Gamma and Nuclear Backscatter): 47
 - 4.8 References: 49

5. **LOAD TEST METHODS**
 - 5.1 High Strain Dynamic Testing (HSDT): 51
 - 5.2 Rapid Load Testing: 60
 - 5.3 Static Load Testing: 66
 - 5.4 Bottom Load Test (Bi-Directional): 69
 - 5.5 References: 76

6. **CORROBORATION AND REMEDIATION OPTIONS**
6.1 Corroboration of Results
6.2 The Re-engineering Option
6.3 Foundation Replacement
6.4 Repair and Grouting Methods
6.5 References

TABLES
2.2 Summary of Relative Advantages and Limitations of Non-Destructive Integrity Testing Methods

FIGURES
1.1 Schematic of Typical Drilled Shaft (after O’Neill and Reese, 1999)
3.1 Acoustic Caliper Measurement Results for a Drilled Shaft Survey.
4.1 Typical CSL Testing Arrangement Showing Transmitter and Receiver Transducers at Several Depths. (b) Plan View of CSL Tubes Showing Possible Test Combinations
4.2 Plot of Signal Amplitude versus Time
4.3 Plot of Arrival Time (or Threshold) and Relative Energy with Depth
4.4 Schematic of CSL Data Reduction and Profile Compilation
4.5 Typical SSL Testing Arrangement Showing Transmitter and Receiver Transducers.
4.6 Typical Impulse Echo Testing Setup.
4.7 Typical Velocity (a) and Force (b) Plots for Impulse Echo Test
4.8 Wave Propagation in a Pile with Changes in Impedance Plotted with Time and Depth (after Vyncke and Van Nieuwenburg, 1987).
4.9 Idealized Response Curve of Mobility vs. Frequency for Impulse Response Test
4.10 Parallel Seismic Test Setup Configuration, and (b) Typical Idealized Plot of Signals with Depth
4.11 Radioactive Probe Schematic for Nuclear Backscatter Radioactive Integrity Testing
5.1 Attaching HSDT Sensors to a Small Drilled Shaft.
5.2 Small Drop Weight with Leads
5.3 8-ton Drop Weight System
5.4 30-ton Drop Weight System
5.5 HSDT Force and Velocity Data for a Drilled Shaft
5.6 30 MN “Gas-Pressure” Equipment Using Gravel Catch System (left), 16 MN Using Mechanical Catch System Over Water (center), and 4 MN Using Hydraulic Catch System (right).
5.7 “Drop-Mass” Load Tester
5.8 Schematic Model for the Analysis of Rapid Load Test Results.
5.9 Measured and Derived Static Load-Movement for a Rapid Load Test.
5.10 Top and Bottom Load Test.
5.11 Test Arrangement for Bottom Load Test.
5.12 Graphical Results of Bottom Load Test.
5.13 Alternative Bottom Cell Locations.
5.14 Equivalent Top-Down Curve for Side Shear and End Bearing Curves shown in Figure 5.12.
6.1 Decision Process for Acceptance of Drilled Shafts (Baker et al., 1993).