Auger Cast-in-Place Piles

By 2013, auger cast-in-place (ACIP) piles were considered as a mature foundation technology throughout the United States. General guidelines for the design and construction of ACIP piles are available along with numerous references for design in specific North American geologies. In fact, the current generation of contractors and geotechnical practitioners might view ACIP piles as just another deep foundation option to be considered, along with driven piles, drilled shafts and others. This acceptance has developed, however, over a 60-plus year period. India is yet to try and embrace this highly economical piling system.

ACIP or Continuous Flight Auger Piles have large potential as a much cheaper foundation system in the middle and large size infrastructure and heavy industry projects in India. DFI of India is planning trial execution and documentation of this system for the benefit of the foundation industry.
Auger Cast-in-Place Piles - The History of Growth

What is Auger Cast-in-Place pile?
The term, Augured Pressure-Grouted (APG) pile is often used when referring to ACIP piles because the piles emerged out of construction processes at the Intrusion-Prepekt firm in the late 1940s. The company’s specialty was pressure grouting and pre-placed aggregate concrete. The grouting was typically accomplished by driving a pipe to a target level and then injecting grout under pressure. In some soil conditions, it was necessary to use an auger to reach the desired grouting depth. In these circumstances, the grout pipe was driven beside the auger and grout was pumped as the auger was withdrawn. The grout pipe was then withdrawn as well. This was the genesis of the APG, or ACIP pile, and many piles were installed using this technique.

Patent, Licenses
The patent application, “Method for Forming Piles” was filed by Raymond Patterson of Intrusion-Prepekt in 1951, and the patent was granted in 1956. The process was eventually modified when a suitable hollow-stem auger was developed. Licenses were granted to the Lee Turzillo Contracting Company and Berkel & Company Contractors, Inc. in the late 1950s. Each of the three companies coined their own terms for the piling process: “Pakt-In-Place” for Intrusion-Prepekt, “Auger Pressure-Grouted” for Berkel and “Augercast” for Turzillo. Over time, “Augercast” was frequently used as a generic term for the system. The installation of these piles was, and still is, a highly nuanced process; “contractor dependent” is a term often seen today. Intrusion-Prepekt, Berkel and Turzillo all had personnel who were part of the original group that developed the system and who appreciated the craftsmanship involved in forming sound piles.

Early installation platforms were wagon or truck-mounted, and augers were advanced by relatively low-torque power units of about 15,000 ft-lbs (20.3 kN-m). Leads were mounted on mechanical cranes that made it difficult to retract the auger smoothly, and grout was placed with pneumatic pumps. Masonry sand was used in the grout (to allow the grout to be pumped with the fairly low-power pneumatic powered piston pumps), and grout was batched on site from bagged cement, fly ash and a grouting agent. The use of the
DFI of India and Two “I”s
Dr. N.V. Nayak

DFI of India is doing great service in spreading knowledge through length and breadth of India by organising seminars, workshop and through Newsletters.

Indians are known for their capabilities for ‘Innovations (I), if duly encouraged. Very recent example is “Mission of Mars.” ISRO did it very successfully at the very 1st attempt which no other country could achieve. Further it was done very economically costing roughly Rs.7.5 per km. In general success rate of ISRO is the highest in the world. We, Governments, Managements, Teachers should cultivate & encourage our younger generations for such innovations. This will lead to speedy development of our nation at a relatively low cost. Unfortunately this do not happen often. It is highly disheartening to see that our code on Under-ream Pile (IS2911 Part 3) is still unprofessional in approach which specifies that pile capacity is independent of soil type and characteristics. It is only one such example. Similarly it is highly disheartening to see that Railways in their civil engineering constructions specify even today use of only Ordinary Portland cement whereas blended cement concrete would yield more economical, more durable and more sustainable structures. There are many such examples. Further this is inspite of the fact that concerned officers are aware of limitations of their specifications. This is where second (I) comes in. We not only need to be innovative but need to convert our knowledge & innovations into practice by “Implementation (I)”. We lack badly in timely implementation.

In spite of this, fortunately some of our Geotechnical and Foundation Engineers have developed and implemented several innovations, many may look very simple but will have significant cost reduction, time saving and improved durability. Some other of innovations are Path breaking. To cite only three cases, we may refer to removal of green concrete above Pile cut off (Fig.1, looks simple), caisson resting on piles (Fig.2, Path breaking innovation) and use of blended cement concrete in piles with high permissible percentage of GGBS in industrially polluted areas where in piles with “OPC” alone failed miserably (Fig.3, Path breaking innovation).

I sincerely believe that DFI of India will arrange Workshops / Seminars, all over India on “Innovations and Implementations” on Foundation Engineering, in addition to interacting with codal authorities and other government authorities to change their approach and specifications for sustainable development in India.

In addition to above two “Is”, we have to learn to be keen “observer” and “disciplined” engineers to ensure speedy growth of our Nation. We also know that geotechnical engineering development is from “Field” to “Theory / Design Office”, a practice followed by “Father of our Soil Mechanics.” Let us follow this “Mantra” for success and development.

“Masters and highly successful people are in a romantic relationships with their work”
Desmond Oshifeso
DFI-India 2017 at IIT Madras

DFI-India 2017, 7th Conference on Deep Foundation Technologies for Infrastructure Development in India

October 05, 2017 - October 07, 2017
IIT Madras, Chennai, India

DFI-India will hold its 7th Annual Conference back in Chennai in collaboration with IIT Madras and the Chennai Chapter of the Indian Geotechnical Society, the site of their 2012 conference. This two day conference will focus on emerging technology developments and case histories on deep foundations, deep excavations and ground improvement featuring presentations of practical importance showcasing latest technologies in the areas of geotechnical investigation, analysis and design including seismic aspects, treated soil properties, computer software, tele-networking, instrumentation, testing, monitoring, installation/construction equipment and methods, with supporting data on improvement of quality, productivity, safety and sustainability. A one-day workshop will precede the conference on October 5th. The event will be of particular interest to contractors, developers, local and government representatives, designers, consultants and educators involved in geotechnical design and construction. Equipment, material and instrumentation suppliers, contractors and other vendors will present their products and services in the Exhibit Hall.

Visit for more details http://www.dfi.org/dfieventlp.asp?13295
Registration details on Page No: 15

Pre-conference workshops on topics of relevance to the region were part of these annual conferences. During the last two years, workshops are being organized in every quarter of the year, the third quarter workshop being a part of the annual conference.

Indian Geotechnical Conference, IGC, is a prestigious annual event of Indian Geotechnical Society affiliated to International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). IGC 2016 was held in Indian Institute of Technology Madras, Chennai during December 2016. DFI of India was invited to conduct the pre-conferences workshop in association with IGC 2016 on 14 December 2016. DFI of India selected 'Deep Foundations in Liquefiable Soils and Deep Excavation Experiences' as the topic for this workshop.

With the recent trend in increased intensity and frequency of earthquakes and the need to understand the tools to effectively deal with liquefaction issues related to the performance of deep foundation. Deep excavations have become more common in recent years in various projects in India namely, metros, basements for tall buildings, and bulk material handling projects, etc. This topic is of significance for design engineers as well as construction engineers. The workshop was designed as two sessions. The morning session was on ‘Design and performance of deep foundation under liquefied soil conditions’ and the post lunch session was on ‘Experiences in the design and execution of deep excavation’.

The workshop was declared open by the president of Indian Geotechnical Society, Prof. A Srirama Rao. Dr. K.S. Ramakrishna showcased DFI of India to the delegates and gave a brief outline of the workshop.

The morning session on Deep Foundations in Liquefiable Soils offered four presentations and the afternoon session on Deep Excavation Experiences was enriched by three presentations. Each presentation was of 40 minute's duration. The presentations details are as below.

Interaction between deep foundations and liquefied soil: case history and guidelines:
Prof. Jonathan P. Stewart, University of California, Los Angeles.

Downdrag and drag load behavior of piles based on blast liquefaction testing:
Prof. Kyle Rollins, Brigham Young University

Behaviour of combined pile-raft foundation and piles in liquefiable soils during earthquake:
Prof. Deepankar Choudhury, Professor, IIT Bombay, Mumbai, India

Pile design in Seismic Areas: Theory and Code Deficiencies:
Prof. Subhamoy Bhattacharya (Suby), University of Surrey (UK)

What caused the collapse of the Nicoll Highway, Singapore?
Prof. Andrew J. Whittle, Massachusetts Institute of Technology

Risks and design challenges of deep excavation in urban settings:
Dr. K.N. Gunalan, AECOM, USA

Construction systems for deep excavations in modern India:
Er. Vetriselvan, L&T Geostructures

Prof. G. L. Sivakumar Babu, President Elect, IGS, chaired the morning sessions and Prof. K. Ilamperuthi, College of Engineering Guindy, Anna University, Chennai, chaired the post lunch sessions. Researchers Balu George and Sona Gokuldas of IIT Madras coordinated the workshop. Er. I.V. Anirudhan, Vice Chairman, DFI of India concluded the session with formal vote of thanks. The delegates gave very positive feedback on the workshop.
A Letter from the DFI President to DFI of India

We are eager and interested to hear of the progress of the DFI of India and our prospects to contribute to the advancement of our industry in India. Many exciting developments are under way, with the establishment of a permanent headquarters for DFI of India and the addition of paid staff to support the work of the many enthusiastic volunteers. We had an excellent report from Dr. Sunil Basarkar at our recent winter planning meeting in San Antonio, Texas, USA on the prospects for growth in India resulting from the push for economic and tax reforms there. It seems that the timing for growth of DFI of India is well matched to a potential growth in the Indian construction markets. There is a worldwide need for investments in infrastructure and India certainly appears to be poised to make those investments as well. Most respected economic forecasts project the Indian economy to grow by more than 7% for the next couple of years, making it the fastest growing major economy in the world.

The DFI Trustees and Executive Committee have been notably impressed with the hard work and dedication of the members of the DFI of India, and the leadership of Chairman Dr. K.S. Rama Krishna. The dedication of our Indian colleagues to improve our industry is reflected in the vigorous program of activities including workshops, seminars and the well-attended DFI-India Annual Conference. It is exciting that DFI of India has just been awarded a grant from the DFI Committee Project Funds to support a project to implement the development of Continuous Flight Auger (CFA) piles in India and improve the quality, reliability, and safety of this technology. We strongly encourage local industry to contribute to this project and help make a difference in the advancement of piling technology in India.

So, it’s an exciting time for DFI of India and I am greatly encouraged by the many things that are happening there. I congratulate all of you for the great work you are doing and I’m looking forward to an opportunity to visit personally.

Warm regards,
-Dan

Continued in Page 6
Auger Cast-in-Place Piles

fine masonry sand limited the achievable compressive strength to typically about 3,000 psi (20.7 MPa). The construction of 400 to 500 linear ft (122 to 152.5 m) of piling in a single day was considered quite an accomplishment. The piles were generally 12 in to 16 in (0.3 m to 0.4 m) diameter with short lengths and of relatively low capacity. The contractors installing ACIP piles worked continuously to address these issues through the development of improved equipment and processes.

1970s and 1980s: Transitional Period

The level of ACIP piling activity increased steadily in the early 1970s, although they were still being used primarily where loads were fairly modest or where substantial uplift resistance was required. This time was also a transitional period for the ACIP industry. Equipment with increasingly higher torque was becoming available. Gear boxes with 30,000 ft-lbs (40.7 kN-m) of torque were now common. The installation process was also being refined. Ready mix companies were now routinely supplying grout, and mixes with concrete sand could be used thanks to more powerful and efficient pumping equipment.

Additionally, the original patent for ACIP piles expired in the mid-1970s, and the number of companies offering the system grew. This led to a greater exposure of the system in the market. However, it also diluted the pool of those with a deep appreciation of the nuances of the process. The installation looks simple, and most of the major equipment needed can be rented; however, seemingly minor

ACIP pile installation at Hindu Temple

Continued from Page 2

4. Registration fees from Delegates which was Rs. 1200.00 for Non-members; Rs. 750.00 for DFI/IEI/IGS members and Rs. 200/- for students.

Seminar Responders

This seminar evoked an overwhelming response with more than 150 participants coming from MMRCL, NMRL, GCs, Metro main contractors like Afcons, NCC, ILFS, ITD Cementation, Government departments, private consultants and service providers; Equipment suppliers; academicians and including post graduate engineering students.

The participants hailed from Amravati, Jalgaon, Mumbai and Ahmedabad, covering a radius of about 600kms.

This seminar had very inspiring standards and was curtain raiser for the existing and novel practices in piling and deep excavation support systems. Each of the speakers had in store various cases of Indian and global practices, untapped technologies with various case studies.

Mr. Mahesh Kumar Agrawal, Director projects, MMRCL was the Chief Guest. The Inauguration ceremony was compered by a professional Mr. Sanjay Tatwawadi. The seminar kit contained the Seminar CD, brochures from sponsors; a writing pad, pen, Programme schedule, badge.

Posted by Dr. Sunil Basarkar, AFCONS, Mumbai, the programme co-ordinator
Technical articles / presentations of relevance are invited from the readers. Please prepare the document in MS word format along with good quality figures and pictures.
The Cover Story

Auger Cast-in-Place Piles

From the earliest installation of cast-in-place piles, the question of, "How do you know what you have here?" has been asked. The issues of whether or not the piles being formed were sound, continuous and of the proper diameter were of high concern, as installation was very operator-sensitive. Early basic inspection guides included monitoring the drill depths and the grout pumps were calibrated for their output. From this, a pumping procedure in terms of the number of strokes-per-foot could be established for given diameters in varying soil conditions.

This same basic process is used today, but the methods of gathering information have changed radically. There are numerous monitoring systems on the market to electronically measure tool depth, torque, grout placement and a variety of other parameters during ACIP pile construction. The first modern automated monitoring system in North America was the Pile Installation Recorder (PIR), developed by Pile Dynamics, Inc. working with Berkel & Company on its development and implementation in 1995. Since that time numerous other automated monitoring systems have become available.

An example of the market penetration of ACIP piles in the 1990s was the preparation for the 1996 Olympic Games in Atlanta, where the system was selected for the majority of construction where deep foundations were needed. The most visible symbol of the Olympics, the Olympic Stadium (later to be transformed into Turner Field, home of the Atlanta Braves), saw the installation of more than 123,000 ft (37,490 m) of piling that ranged from 35 ft to 85 ft (10.7 m to 25.9 m) in length.

The project included 16 in (0.4 m) diameter piles with a design compressive load of 150 tons (1,335 kN), requiring a grout compressive strength of 6,000 psi (41.4 MPa). This, in contrast with the struggle to produce 3,000 psi (20.7 MPa) grout 30 years earlier is an example of how one component of the ACIP piling system has advanced, and all aspects of the process have advanced similarly. Clearly, the major thrust in the use of ACIP piles has been in development of equipment, materials and processes to go “bigger and deeper,” and the increase in design loads reflects that emphasis. Certainly, increases in capacity of conventional ACIP piles will occur with development of more powerful equipment; however, new processes seem to be the likely source of significant changes in the cast-in-place pile industry.

During the 1990s, European systems based on fixed mast installation platforms entered the U.S. market. In contrast to the historical emphasis on the casting process seen in conventional ACIP piles, the European drilled displacement (DD) and Continuous Flight Auger (CFA) piles evolved with an emphasis on control of the drilling process, and these systems brought with them a broad base of related data acquisition technology.

Technology Tour

In 2002, representatives of AASHTO and FHWA embarked on a technology scan tour of Europe. The purpose of the trip was to see if there were construction techniques in place in Europe that would be of value in accelerating FHWA projects. Several processes found to be of interest were documented in two papers by Ali Porbaha, Dan Brown, Alan McNab and Richard Short. Both papers were presented at the DFI Annual Conference on Deep Foundations in San Diego in October of 2002.

A major element of the tour was an interest in the European method of installing cast-in-place piles, and that interest developed into an initiative to produce FHWA Geotechnical Engineering Circular (GEC) No. 8, Design and Construction of Continuous Flight Auger Piles, which was published in July, 2007. The implementation of the European systems and the fusion of European and conventional U.S. systems continue today.

Over the past 60-plus years, the ACIP pile industry, and the application of the system have changed dramatically. Today, APG piles of over 42 in (1.1 m) diameter and 150 ft (45.7 m) in depth are not uncommon. Where ACIP piles were once used to support relatively modest loads, they are routinely installed in geologies today where the load limits are structural (from code limits relating the allowable load of the grout or concrete used) rather than geotechnical. For example, 24 in (0.6 m) diameter APG piles have been installed to support 400 ton (3,559 kN), or greater, single-pile compressive loads on multiple projects in the past few years.

Conclusion

Contractors working in the ACIP pile arena have recognized the need to develop higher-capacity equipment, refine installation and quality control procedures, and to develop materials and equipment to provide ever increasing capacities in a broader range of subsurface conditions. Material suppliers have developed grout additives that make it possible to cast piles with increasingly reliable high capacities and to insert reinforcing steel to greater depths. Just as important, many in the geotechnical community have responded with a willingness to evolve technically, and the result has been application of ACIP piles over a broad range of construction types in an increasing variety of geologic settings.

Contributors: Willie M. NeSmith, P.E. (retired); Alan Roach, President, and W. Morgan NeSmith, P.E., Chief Geotechnical Engineer, Berkel & Co. Contractors, Inc.
Interaction between deep foundations and liquefied soil: case history and guidelines:
Jonathan P. Stewart, University of California, Los Angeles jstewart@seas.ucla.edu

Lateral Ground Displacements

Level ground: no lateral spreading
\[\tau_{\text{static}} = 0 \]
Post-liquefaction undrained shear strength: \(S_{u-\text{liq}} \)
Gentle slope: cyclic mobility, lateral spreading
\[\tau_{\text{static}} < S \]
Relatively steep slope: flow failure
\[\tau_{\text{static}} > S_{u-\text{liq}} \]

Lateral spreading and flow failure apply displacement demands to deep foundations

Showa Bridge, 1964 Nigata EQ, Japan
vis.eng.uci.edu
Nishihomiya Bridge, 1995 Kobe EQ, Japan
geerassociation.org
2010 Maule, Chile EQ
USDOT FHWA Report FHWA-HRT-11-030
Response Analysis

Limit pressure approach: applied in spreading layers

Continuum model: dynamic analysis

Equivalent-static analysis (ESA)

ESA Guidelines Documents

- MCEER/ATC-49: Used in AASHTO LRFD Bridge Design Specifications

- Ashford et al. (2011): Basis for Caltrans design guidelines (2013)

Existing design guidelines:

- Limit pressure approach
 - E.g., Japanese Roadway Association\(^1\) (2002) — *not recommended*

- Equivalent-static analysis (ESA) using BNWF:
 - MCEER/ATC-49— prescriptive guidelines incorporated into AASHTO LRFD Bridge Design Specifications
 - Ashford et al.\(^2\) (2011) PEER Report—

\(^1\)JRA (2002). Specifications for highway bridges, Public Works Research Institute and Civil Engineering Research Laboratory, Tokyo.

3http://www.dot.ca.gov/research/structures/peer_lifeline_program/
ABSTRACT: The Pacific Earthquake Engineering Research Center and the California Department of Transportation have recently developed design guidelines for computing foundation demands during lateral spreading using equivalent static analysis (ESA) procedures. In this study, ESA procedures are applied to two parallel bridges that were damaged during the 2010 M 7.2 El Mayor-Cucapah earthquake in Baja California, Mexico. The bridges are both located approximately 15 km from the surface rupture of the fault on soft alluvial soil site conditions. Estimated median ground motions in the area in the absence of liquefaction triggering are peak ground accelerations = 0.27g and peak ground velocity = 38 cm/sec (RotD50 components). The bridges are structurally similar and both are supported on deep foundations, yet they performed differently during the earthquake. A span of the pile-supported railroad bridge collapsed, whereas the drilled-shaft-supported highway bridge suffered only moderate damage and remained in service following the earthquake. The ESA procedures applied to the structures using a consistent and repeatable framework for developing input parameters captured both the collapse of the railroad bridge and the performance of the highway bridge. Discussion is provided on selection of the geotechnical and structural modeling parameters as well as combining inertial demands with kinematic demands from lateral spreading.

Recommended Design Practice for Pile Foundations in Laterally Spreading Ground

Scott A. Ashford
School of Civil and Construction Engineering
Oregon State University

Ross W. Boulanger
Department of Civil and Environmental Engineering
University of California, Davis

Scott J. Brandenberg
Department of Civil and Environmental Engineering
University of California, Los Angeles

PEER reports can be ordered at http://peer.berkeley.edu/publications/peer_reports.html or by contacting
Pacific Earthquake Engineering Research Center
University of California, Berkeley
325 Davis Hall, mail code 1792
Berkeley, CA 94720-1792
Tel: 510-642-3437; Fax: 510-642-1655
Email: peer_editor@berkeley.edu
The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. Investigators from over 20 universities, several consulting companies, and researchers at various state and federal government agencies contribute to research programs focused on performance-based earthquake engineering. These research programs aim to identify and reduce the risks from major earthquakes to life safety and to the economy by including research in a wide variety of disciplines including structural and geotechnical engineering, geology/seismology, lifelines, transportation, architecture, economics, risk management, and public policy. PEER is supported by federal, state, local, and regional agencies, together with industry partners.
DFI members can post their professional achievements, corporate achievements, awards, other news related to geotechnical profession here. Please send the details 15 days before every quarter, April, July, October and December.

Corporate Members
Afcons Infrastructure Class IV
Giridhar Rajagopalan
Akhil Kumar Gupta
Gokul Javalikar
Anantakumar Rayaprolu
Avinash Patil
Shashank Rajbhoj
Shahlesh Laxman Patil
Vikas Chandrakant Rane
Aditya Suresh Khatavkar
Sunil S. Basarkar
Vivek Abhyankar
Prakash Bansod
ValiVeti Ramamurthy
Jiten Anandani
Sarita Joshi

Keller Ground Engineering India Pvt. Ltd., Class III
Madan Kumar Annam
Niraj Kumar Mishra
Saday Mishra
Sangeen Naik B.
Arunkumar Sekar
Ramadas V.V.S.
Sridhar Valluri
Tanvir Wahab Sayed
Deepak Raj
Hari Krishna Yadamuri

Geo-Ground Engineering Operations India Pvt Ltd, Affiliate
Kamlesh Mishra
Shailendra

Individual Members - Gov Emp
Kanniappan Ilamparuthi, Anna University

General Individual Members
Venkatraman Balakumar, Simplex Infrastructure Ltd
Shankar Guha, Simplex Infrastructure Ltd
Anirudhan IV, Geotechnical Solutions
Sree Rama Krishna Kalavacharla, Deep Foundations Institute of India

General Individual Members (contd...)
Beema Narayanasamy Krishnaswami, Time Institute for Materials Testing
Ghananeel Molkar, Liebherr India Private Limited
Surejit Mukherjee, Suportech Infrastructure Pvt Ltd.
Mohan Ramanathan, Advanced Construction Technologies Pvt Ltd.
Dicky Sinha, Tethys Business & Projects P Limited
Sandeeptalwar, Super Drilling Pvt Ltd
Asit Thakkar, D. Thakkar Constructions Pvt. Ltd.
Anil Kumar S.V, L & T Construction
Parthasarathy C R, Sarathy Geotech & Engineering Services

Corresponding Members
Vidyasaagar Kongubangaram, L&T Construction
Narayan Agrawal, RVR Projects Pvt Ltd
Rajasekaran Balasubramaniam, Avant-Garde Engineers and Consultants (P) Ltd.

Srijit Bandopadhyay, Bhabha Atomic Research Centre
Raj Banerjee, Bhabha Atomic Research Centre
Abhishek Basu, Howe Engineering Projects India Pvt. Ltd.
Tejas Belani, Howe Engineering Projects India Pvt. Ltd.
P. Srinivasa Charyul, Afcons Infrastructure Limited
Sagnic Dutta, Afcons Infrastructure Limited
Ramesh Gangisetty, Sarathy Geotech & Construction Services
Prashant Kumar Gaur, Khemka Instruments Pvt Ltd.
Jogesh Chandra Gogoi, Sanjib Services
Aminul Islam, Itd Cementation India Limited
Salim John, Tebodin Consultants & Engineers
Sumit Kanjilal, Budge Budge Institute Of Technology
Karthika M.S., L & T Construction
Prakash Manickavasagam, Howe Engineering Projects India Pvt Ltd.
Manoj Nayak, Stup Consultants Pvt Ltd
Manohar Pakade, National Highway Division No.14, Nagpur
Bhiva Parab, Royal Haskoning Dhv
Shambhua Paul, Bridge And Roof C (India) Ltd.
Jayanti Raha, Bridge And Roof C (India) Ltd.
AnanthRamasyam, Independent Consultant
T Rambabu, Bharat Geosystems Private Limited
Duggirala Vvk Rao, Atkins India Private Ltd.

Contact at DFI of India Office
T S Mahendran
Senior Executive (Administration & Accounts)
Mobile +91-9710222444

DEEP FOUNDATIONS INSTITUTE OF INDIA
44/19 Usha Street,
Dr. Seethapathy Nagar, Velachery,
Chennai 600042 Tamil Nadu, INDIA
Web: www.dfi-india.org
Email: dfiindiaoffice@gmail.com

Corresponding Members (Contd.)
Guraja Srinivasa Rao, Saipem India Projects Private Limited
Kiran Kumar Rumanand, Tencate Geosynthetics
Subhadip Saha, Bharat Petroleum Corporation Limited
Soumyadev Sarkar, Bengal Peerless Housing Dev Co. Ltd
Maruthi Nanditha Shinde, Saipem India Projects Private Limited
Raunaq Singh, Hydraulic And Engineering Instrument
Loganathan Swamiappan, Sakti Developments Co.
Puneet Talreja, Eco Drilling Fluids
Ravikiran Vaidya, Geo Dynamics
Abhijit Patki, Project Management Group
Anandani Jiten, Afcons Infrastructure Limited
Krishnendu Mandal, Mythcon
Badam Sundara Rao, Sundar Associates
Ajit Kumar Kanani, Walfs Infra India Private Limited
Kiran A S, National Institute of Ocean Technology (NIOT)
Sivaraman, National Institute of Technology, Tiruchirappalli
Sudhir Kumar, Aarvee Associates Architects Engineers Consultants Pvt. Ltd
Jaykumar Shukla, L&T Power, Mumbai
Vidyaranya Bandi, L&T, Mumbai
The 2017 DFI Winter Planning Meeting (WPM) provided a forum for trustees of the DFI and DFI Educational Trust Boards, chairs of the technical committees and working groups, as well as other invited guests to meet and discuss the events of 2016 and to plan for 2017 and beyond. This year’s WPM was held at the Westin Riverwalk hotel in San Antonio, Texas, from February 22-24.

Sunil S. Basarkar, Ph.D., executive committee member of DFI of India, made a long journey to the U.S. to attend the WPM, where he provided an extensive report on the chapter’s activities. Dr. Basarkar provided a brief state of the economy in India, which is projected to grow between 7 and 8 percent in both 2017 and 2018. He reported that DFI of India is actively involved with improving quality and safety in construction practices by spreading awareness of the latest foundation technologies in India through quarterly seminars and workshops in various regions and annual conferences at premier institutions. In 2016, a technical conference was held in Shibpur, Kolkata, and four workshops were held in Guntur, Raipur, Kolkata and Delhi. Another technical conference is scheduled for October 6-7, 2017, at IIT Madras, Chennai. Four workshops are also planned for 2017 on different topics and in different parts of the country. However, Dr. Basarkar indicated that more training and technology implementation efforts still need to be done throughout India. DFI of India also hosts monthly meetings, distributes a quarterly newsletter, and is developing a program for operator training.

DFI to Host Helical Piles and Tiebacks Specialty Seminar on September 18-19 in Montreal

Deep Foundations Institute’s (DFI) Helical Piles and Tiebacks Committee is hosting a one-day seminar on the detailed design, application and installation of helical piles and tiebacks for new construction and rehabilitation. The seminar is being held on September 18-19, in Montreal, Quebec, Canada. Topics include axial, lateral, uplift, seismic, cyclic and dynamic loading; settlement analyses; and materials, construction and testing procedures for helical projects. The seminar features presentations on current technologies, design concepts, research and case histories for helical piles and tiebacks applications. Equipment, material and instrumentation suppliers; contractors; engineers; and other vendors will exhibit innovative products and services during the seminar.

The seminar features two keynote speakers. Dr. Hesham El Naggar, P.Eng., professor of geotechnical engineering and associate dean of engineering at University of Western Ontario, Canada, has 30 years of experience in analysis and design of foundations and soil-structure interaction. Dr. Amy Cerato, P.E., professor in the School of Civil Engineering and Environmental Science at the University of Oklahoma, is a geotechnical engineer whose research includes predicting expansive soil behavior using microscale properties and foundation design for alternative energy. Dr. Yasser Abdelghany of the British Columbia Ministry of Transportation and Infrastructure is the chair for this event.

The DFI Helical Piles and Tiebacks Committee is meeting before the seminar on September 18, and encourages participation from seminar attendees and industry professionals in Quebec. The committee includes manufacturers, engineers, academics, suppliers and experienced contractors who constitute a forum for advancing the applications, understanding and use of helical pile and tieback foundation elements. Following the committee meeting, the seminar will kick-off with a welcome networking reception in the exhibit area.

For more information or to register, visit http://www.dfi.org/helical17.

DFI-EFFC Partner to Host the International Conference on Deep Foundations and Ground Improvement: June 6-8, 2018, in Rome

Abstracts Being Accepted Until July 17, 2017

The Call for Abstracts is open for the DFI-EFFC International Conference on Deep Foundations and Ground Improvement at Sapienza University in Rome on June 6-8, 2018. The theme of the conference is Urbanization and Infrastructure Development: Future Challenges.

International public and private clients are invited to present their upcoming programs for development of new infrastructure. Researchers and designers are invited to contribute and debate design and modeling criteria for new and innovative technologies. Presentations related to variations in national and international codes (including Eurocode), new investigation methods, Project Management Information System (PMIS) and Building
Information Modeling (BIM) implementation, are strongly encouraged.

Contractors are invited to discuss case histories that highlight how these procedures impact contractual rules, construction risk, execution procedures, quality control and final acceptance criteria. Geotechnical equipment and material manufacturers as well as technology providers are invited to present advancements and trends in capabilities, safety, sustainability and environmental compliance. Young researchers are encouraged to submit for consideration summaries of their Ph.D. and M.Sc. final reports that are related to the conference theme.

Abstracts for technical papers and panel sessions can be submitted at www.dfi-effc2018.org. The deadline is Monday, July 17, 2017.

DFI India 2017 Conference at IIT Madras, October 5-7, 2017
Registration fees

<table>
<thead>
<tr>
<th></th>
<th>INR*</th>
<th>USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-day Conference Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFI Member</td>
<td>6,500</td>
<td>200</td>
</tr>
<tr>
<td>IGS Member</td>
<td>7,000</td>
<td>250</td>
</tr>
<tr>
<td>Non-Member (includes DFI membership thru Dec. 31, 2018)</td>
<td>8,700</td>
<td>300</td>
</tr>
<tr>
<td>Students (limited to 40)</td>
<td>3,500</td>
<td>50</td>
</tr>
<tr>
<td>Spouses</td>
<td>2,500</td>
<td>35</td>
</tr>
<tr>
<td>Authors (single concession, one author per one paper)</td>
<td>5,500</td>
<td>150</td>
</tr>
<tr>
<td>2-day Conference plus Workshop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFI Member</td>
<td>8,500</td>
<td>300</td>
</tr>
<tr>
<td>IGS Member</td>
<td>9,000</td>
<td>350</td>
</tr>
<tr>
<td>Non-Member (includes DFI membership thru Dec. 31, 2018)</td>
<td>10,700</td>
<td>400</td>
</tr>
<tr>
<td>Students (limited to 20) 4,500 75 Spouses</td>
<td>2,500</td>
<td>35</td>
</tr>
<tr>
<td>Authors (single concession, one author per one paper)</td>
<td>7,500</td>
<td>250</td>
</tr>
</tbody>
</table>

REGISTER NOW FOR DFI-INDIA 2017 www.regonline.com/dfi-india2017
WHAT CAN DFI DO FOR YOU?

Overview

DFI is an international association of contractors, engineers, suppliers, academics and owners in the deep foundations industry. For more than 30 years, we have brought together professionals for networking, education, communication and collaboration. As a member, you help create a consensus voice and a common vision for continual advancement in the planning, design and construction of deep foundations and excavations.

Find Common Ground. Become a Member of DFI

Network with thousands of members and industry professionals worldwide
Get involved locally through DFI’s active presence in Europe, India and the Middle East
Strengthen your knowledge base and obtain practical information at seminars, short courses, workshops and conferences
Collaborate with colleagues by joining one of 15 active Technical Committees, Regional Chapters or a DFI group
Stay informed through the flagship Deep Foundations magazine and the peer-reviewed DFI Journal
Gain visibility with a corporate member listing on the DFI website, which has 20,000 views each month
Connect and communicate with industry peers through social media such as DFI’s LinkedIn Groups
Access OneMine.org and download up to 100,000 articles, technical papers & books from DFI & organizations all over the world - at no cost

Visit www.dfi-india.org OR www.dfi.org to know more and to become a member

SAVE THE DATE

SAVE THE DATE
DFI-India 2017: 7th Conference on Deep Foundations Technologies for Infrastructure Development in India
October 5-7, 2017 • Indian Institute of Technology Madras, Chennai, India
Updated details on the event as plans evolve can be found at www.dfi-india2017.org.

DFI of India News, Quarterly e-Newsletter, published by DFI of India, Chennai. Copyright: DFI of India, Chennai
This e-newsletter of DFI of India is available at http://www.dfi.org/comthome.asp?INDIA.
Editorial team: Anirudhan I.V, Y. Harikrishna, Ravikiran Vaidya & Dr. Sunil S. Basarkar
All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the publishers. Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers nor the author for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein. The views expressed in the articles are of the authors and the articles are published after obtaining full consent of the respective authors and based on their confirmation that there are no copyright violations whatsoever.